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Cinématique et dynamique du solide
indéformable

Au chapitre 2, on a établi la cinématique et la dynamique du point matériel. Dans ce

chapitre, on va étendre ce modèle pour considérer la cinématique et la dynamique du solide

indéformable. La première section est consacrée à la cinématique du solide indéformable et

la deuxième section est consacrée à la dynamique du solide indéformable. La dernière section

est consacrée au tenseur d’inertie et aux équations d’Euler.

12.1 Cinématique du solide indéformable

Au chapitre 2, on a défini le modèle du point matériel. Dans ce modèle, on attribue toute

la masse d’un objet à un point qui correspond au centre de masse de l’objet. Dans ce modèle,

la cinématique et la dynamique de l’objet sont entièrement déterminées par le mouvement

du point matériel. En d’autres termes, on ne tient pas compte du changement d’orientation

de l’objet lors de son mouvement, ce qui signifie que l’on ignore ou néglige le mouvement de

rotation propre de l’objet sur lui-même autour d’un axe passant par son centre de masse.

C’est la raison pour la laquelle on introduit à présent un modèle plus général qui permet

de rendre compte de l’orientation du solide au cours du temps. Ce modèle est le solide

indéformable (Fig. 12.1).
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Figure 12.1 Sur l’image de gauche, le centre de masse du cube a un mouvement de
rotation par rapport au point O, mais il n’y a pas de mouvement de rotation propre du
cube. Sur l’image de droite, le cube a un mouvement de rotation propre autour de son
centre de masse, car la figure allégorique Helvetia change d’orientation. Ce cube est un
solide indéformable que l’on peut considérer comme un référentiel.

12.1.1 Solide indéformable

Un solide indéformable est un système constitué d’un ensemble de points matériels

dont les distances relatives sont constantes. Comme les distances sont constantes, le solide

indéformable ne change ni de volume ni de forme mais uniquement d’orientation spatiale.

Les référentiels sont des solides indéformables. Les déformations élastiques et plastiques des

solides sont le domaine d’étude de la résistance des matériaux qui dépasse largement le cadre

de ce cours.
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Théorème 12.1 6 coordonnées sont nécessaires pour déterminer entièrement la position

et l’orientation d’un solide indéformable de forme quelconque par rapport à un référentiel

donné.

Démonstration Un solide indéformable peut être considéré comme un référentiel. On peut

donc complètement déterminer la position et l’orientation de tout solide indéformable à

l’aide de 4 points matériels non-coplanaires. On peut donc considérer un tétraèdre régulier

de longueur d’arête r dont les sommets sont les points matériels A, B, C et D, ce qui

implique qu’il y a une distance r entre chaque couple de points. L’orientation respective des

points A, B, C et D est choisie telle que (AB ×AC) ·AD > 0.

Pour déterminer la position du point A, il faut 3 coordonnées, par exemple des coordonnées

cartésiennes. Le point matériel B se trouve sur la sphère de rayon r centrée au point A. Il faut

donc 2 coordonnées supplémentaires pour déterminer la position du point B, par exemple

deux angles. Le point matériel C se trouve sur le cercle obtenu par intersection entre les

sphères de rayon r centrées en A et B. Il faut donc 1 coordonnée supplémentaire pour

déterminer la position du point C, par exemple un angle. Le point matériel D se trouve

au point d’intersection entre les sphères de rayon r centrées en A, B et C. A priori, il y a

deux points possibles de part et d’autre du plan ABC. Cependant, la condition d’orientation

respective des points matériels A, B, C et D détermine de quel côté du plan ABC se trouve

le point D. Le point D est donc entièrement déterminé une fois que la position des points A,

B et C est connue. Il faut donc 6 coordonnées pour déterminer la position et l’orientation

d’un solide indéformable par rapport à un référentiel donné.
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B
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12.1.2 Angles d’Euler

L’orientation d’un solide indéformable peut être repérée par des angles particuliers appelés

angles d’Euler. Pour déterminer ces angles, on considère un repère cartésien (x̂1, x̂2, x̂3)

associé au référentiel d’inertie et un repère cartésien (ŷ1, ŷ2, ŷ3) associé au référentiel accéléré

du solide en rotation autour du point O. Les angles d’Euler sont définis comme les trois

angles de rotation (ϕ, θ, ψ) qui amènent le repère cartésien (x̂1, x̂2, x̂3) sur le repère cartésien

(ŷ1, ŷ2, ŷ3).
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Figure 12.2 Repères cartésiens (x̂1, x̂2, x̂3) et (ŷ1, ŷ2, ŷ3) centrés en O et angles d’Euler
(ϕ, θ, ψ).

Le premier angle d’Euler est l’angle de précession ϕ autour de l’axe vertical Ox3 qui amène

l’axe horizontal Ox1 sur l’axe nodal Ou (Fig. 12.3a). Le second angle d’Euler est l’angle de

nutation θ autour de l’axe nodal Ou qui amène l’axe vertical Ox3 sur l’axe Oy3 (Fig. 12.3b).

Le troisième angle d’Euler est l’angle de rotation propre ψ autour de l’axe de rotation propre

Oy3 qui amène l’axe Ou sur l’axe Oy1 et l’axe Ov sur l’axe Oy2 (Fig. 12.3c).

En général, les rotations ne s’additionnent pas car ce sont des applications linéaires des

vecteurs de bases représentées par des matrices 3×3 qui ne commutent pas. En revanche, les

rotations infinitésimales commutent toujours. Le vecteur vitesse angulaire Ω de rotation du

solide par rapport au référentiel d’inertie est défini à l’aide des formules de Poisson (10.23) −

https://fr.wikipedia.org/wiki/Leonhard_Euler
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(a) Rotation d’angle ϕ autour de l’axe Ox3
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(b) Rotation d’angle θ autour de l’axe Ou
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(c) Rotation d’angle ψ autour de l’axe Oy3

Figure 12.3 Rotations successives (a), (b) et (c) qui définissent les trois angles d’Euler
(ϕ, θ, ψ).

décrivant des rotations infinitésimales au cours du temps − donnant les dérivées temporelles

des vecteurs de base du repère lié au solide. Par conséquent, la vitesse angulaire du solide

Ω − qui est un référentiel accéléré − par rapport au référentiel d’inertie peut être exprimée

comme la somme de trois vecteurs vitesse angulaire dont la norme est la dérivée temporelle

d’un angle d’Euler et dont l’orientation est donnée par l’axe de rotation correspondant,

Ω = ϕ̇+ θ̇ + ψ̇ = ϕ̇ x̂3 + θ̇ û+ ψ̇ ŷ3 (12.1)

Le vecteur ϕ̇ est la vitesse angulaire de précession du solide indéformable autour de

l’axe vertical Ox3. Le vecteur θ̇ est la vitesse angulaire de nutation du solide indéformable

autour de l’axe nodal Ou et le vecteur ψ̇ est la vitesse angulaire de rotation propre du

solide indéformable autour de l’axe de rotation propre Oy3.

Ces mouvements de précession, de nutation et de rotation propre sont bien illustrées par

le gyroscope formé d’une sphère sur coussin d’air (Fig. 12.4).

Figure 12.4 Gyroscope à sphère sur coussin d’air.

Comme autres illustrations de ces mouvements, on peut mentionner la toupie chinoise,

qui peut se retourner sur sa pointe par nutation, et le disque d’Euler où la vitesse angulaire

du point de contact avec une surface plane diverge lorsqu’il s’arête (Fig. 12.5).

https://www.youtube.com/watch?v=XyLC_1KW1-A
https://www.youtube.com/watch?v=XyLC_1KW1-A
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Figure 12.5 Toupie chinoise qui se retourne sur sa pointe et disque d’Euler.

12.1.3 Angles de Tait-Bryan

Une variante des angles d’Euler connue sous le nom d’angles de Tait-Bryan est utilisée

en aéronautique. L’axe de précession s’appelle l’axe de lacet, l’axe de nutation porte le

nom d’axe de tangage et l’axe de rotation propre s’appelle de l’axe de roulis (Fig. 12.6).

Peter Guthrie Tait

Axe de tangage Axe de lacet

Axe de roulis

Figure 12.6 Angles de Tait-Bryan décrivant les lacets (précession), le tangage (nutation)
et le roulis (rotation propre)

12.1.4 Vitesse et accélération d’un point du solide indéformable

On considère un repère cartésien (x̂1, x̂2, x̂3) lié au référentiel d’inertie absolu qui est

immobile et un repère cartésien (ŷ1, ŷ2, ŷ3) lié au référentiel relatif du solide indéformable

qui est en rotation à vitesse angulaire Ω par rapport au référentiel absolu (Fig. 10.4). On

aimerait exprimer la vitesse d’un point matériel P quelconque du solide en fonction de la

vitesse du point matériel A à l’origine du repère et de la vitesse angulaire Ω qui rend compte

du changement d’orientation du solide par rapport au référentiel d’inertie. Comme le solide

est indéformable et que le point matériel P appartient au solide, sa vitesse relative et son

accélération relative sont nulles,

vr (P ) = 0 et ar (P ) = 0 (12.2)

Pour alléger l’écriture, on dénote la position relative du point P et les vitesses et accélérations

absolues des points A et P comme,

AP ≡ rr (P ) VA ≡ va (A) VP ≡ va (P )
AA ≡ aa (A) AP ≡ aa (P )

(12.3)

Compte tenu des conditions (12.2) et de la notation (12.3), l’identité entre les vitesses (10.29)

− obtenue dans le cadre du mouvement relatif − pour un solide indéformable se réduit à,

VP = VA +Ω×AP (12.4)

https://www.youtube.com/watch?v=cXNEdpRdgGI
https://www.youtube.com/watch?v=sCYNnCPRF4k
https://fr.wikipedia.org/wiki/Peter_Guthrie_Tait
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Comme le point Q est un point matériel quelconque du solide au même titre que le point

P , l’identité (12.4) implique que,

VQ = VA +Ω×AQ (12.5)

La différence entre les relations (12.5) et (12.4) s’écrit,

VQ − VP = Ω× (AQ− AP ) = Ω× PQ (12.6)

Cette relation est remise en forme comme,

VQ = VP +Ω× PQ (12.7)

Compte tenu des conditions (12.2) et de la notation (12.3), l’identité entre les

accélérations (10.43) pour un solide indéformable se réduit à,

AP = AA +Ω× (Ω×AP ) + Ω̇×AP (12.8)

Comme le point Q est un point matériel quelconque du solide au même titre que le point

P , l’identité (12.8) implique que,

AQ = AA +Ω× (Ω×AQ) + Ω̇×AQ (12.9)

La différence entre les relations (12.9) et (12.8) s’écrit,

AQ − AP = Ω×
(
Ω× (AQ− AP )

)
+ Ω̇× (AQ− AP )

= Ω× (Ω× PQ) + Ω̇× PQ
(12.10)

Cette relation est remise en forme comme,

AQ = AP +Ω× (Ω× PQ) + Ω̇× PQ (12.11)

12.1.5 Roulement et glissement

Sur le plan pratique, on est souvent confronté à des solides indéformables qui roulent sur

une surface horizontale ou un plan incliné. Ces solides sont en général des cylindres ou des

sphères. La cinématique de ce roulement peut être décrite dans le plan vertical qui passe

par le centre de masse G de l’objet. Dans ce plan, l’objet en coupe est un cercle. Le point

matériel C est le point de contact entre le cercle et la surface (Fig. 12.7).

G

C

Figure 12.7 Roulement et glissement d’un solide

Le roulement et le glissement d’un solide indéformable sont caractérisés par la rela-

tion (12.7) qui lie la vitesse du centre de masse VG à la vitesse du point de contact VC
entre le solide et la surface,

VG = VC +Ω×CG (roulement avec glissement) (12.12)

où on a procédé à l’identification suivante des points du solide G ≡ Q et C ≡ P . Ainsi, si

premièrement le solide glisse et roule, la vitesse du point de contact VC et la vitesse du centre

de masse VG sont non-nulles, mais elles ne sont pas égales dû au mouvement de roulement

du solide. Deuxièmement, si le solide glisse sans rouler, son orientation ne change ce qui

signifie que la vitesse angulaire est nulle, c’est-à-dire Ω = 0. Ainsi, la condition (12.12) se

réduit à la condition de glissement sans roulement est

VG = VC (glissement sans roulement) (12.13)
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Troisièmement, si le solide roule sans glisser, la vitesse du point de contact est nulle, c’est-

à-dire VC = 0, mais la vitesse du centre de masse VG est non nulle dû au roulement. Par

conséquent, d’après la relation (12.7), la condition de roulement sans glissement (12.7)

s’écrit explicitement,

VG = Ω×CG (roulement sans glissement) (12.14)

Lorsque le solide roule, le point matériel qui correspond au point de contact C entre le solide

et la surface change au cours du temps lors d’un mouvement de roulement sans glissement,

mais à chaque instant la vitesse VC de ce point est nulle.

12.2 Dynamique du solide indéformable

Etant donné qu’un solide indéformable est un ensemble de points matériels dont les dis-

tances relatives sont fixes, le théorème de la quantité de mouvement (11.91) et le théorème

du centre de masse (11.93) pour un solide indéformable sont identiques à ceux obtenus pour

un système fermé de points matériels,∑
F ext = Ṗ =MAG car P =M V G et M = cste (12.15)

De manière similaire, par rapport à un point fixe O du référentiel d’inertie, c’est-à-dire

VO = 0, le théorème de la quantité de mouvement (11.95) pour un solide indéformable est

identique à celui obtenu pour un système fermé de points matériels,∑
M ext

O = L̇O (12.16)

Le théorème du moment cinétique (12.16) dépend du point par rapport auquel le moment

cinétique et le moment de force résultant sont évalués. On aimerait à présent généraliser

ce théorème à un point quelconque P qui appartient au solide et en particulier au centre

de masse G. Pour ce faire, on doit d’abord établir les théorèmes de transfert du moment

cinétique et du moment de forces extérieures résultants.

12.2.1 Théorèmes de transfert du moment cinétique

Pour un solide indéformable qui est un système fermé de points matériels Pα, la quantité de

mouvement totale et le moment cinétique total sont la somme des quantités de mouvement

et des moments cinétique des points matériels (11.87). Compte tenu des relations (11.80)

et (11.88), le moment cinétique total s’écrit,

LO =
∑
α

OP α × pα =
∑
α

(OP + PP α)× pα

= OP × P +
∑
α

PP α × pα = OP ×MVG +LP
(12.17)

Ainsi, le théorème de transfert du moment cinétique affirme que le moment cinétique LO
du solide indéformable évalué par rapport à l’origine O du référentiel d’inertie est exprimé

en fonction du moment cinétique LP du solide évalué par rapport à un point quelconque P

du solide indéformable comme,

LO = OP ×M VG +LP = RP × P +LP (12.18)

Pour le centre de masse G, le théorème de transfert du moment cinétique (12.18) s’appelle

le théorème de König et s’écrit,

LO = OG×M VG +LG = RG × P +LG (12.19)

Ainsi, le moment cinétique LO du solide indéformable évalué par rapport à l’origine O

Johann Samuel

Koenig

est la somme du moment cinétique RG × P du centre de masse lié au mouvement du

centre de masse et du moment cinétique LG lié au mouvement de rotation propre du solide

https://fr.wikipedia.org/wiki/Johann_Samuel_K%C3%B6nig
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indéformable autour du centre de masse. Compte tenu des théorèmes de transfert (12.18)

et (12.19) du moment cinétique,

LP = −OP ×M VG +LO = (OG− OP )×M VG +LG (12.20)

Par conséquent, le théorème de transfert du moment cinétique affirme que le moment

cinétique LP du solide indéformable évalué par rapport à un point P quelconque est exprimé

en fonction du moment cinétique LG du solide indéformable évalué par rapport au centre

de masse G comme,

LP = PG×M VG +LG (12.21)

Le théorème de transfert du moment cinétique (12.21) évalué au point de contact C entre

le solide indéformable et la surface sur laquelle il roule s’écrit,

LC = CG×M VG +LG (12.22)

12.2.2 Théorèmes de transfert de moments de force

Pour un solide indéformable qui est un système fermé de points matériels Pα, la somme des

forces extérieures et la somme des moments de forces extérieures sont obtenues en sommant

sur l’ensemble des points matériels (11.89). Compte tenu des relations (11.81) et (11.93), la

somme des moments de forces extérieures s’écrit,∑
M ext

O =
∑
α

OP α × F ext
α =

∑
α

(OP + PP α)× F ext
α

= OP ×
∑

F ext +
∑
α

PP α × F ext
α = OP ×MAG +

∑
M ext

P

(12.23)

Ainsi, le théorème de transfert de la somme des moments de forces extérieures affirme que

la somme des moments de forces extérieures
∑
M ext

O exercés sur le solide indéformable et

évalués par rapport à l’origine O du référentiel d’inertie est exprimé en fonction de la somme

des moments de forces extérieures
∑
M ext

P exercés sur le solide indéformable et évalués par

rapport à un point quelconque P du solide indéformable comme,∑
M ext

O = OP ×MAG +
∑

M ext
P =

∑
RP × F ext +

∑
M ext

P (12.24)

Pour le centre de masse G, le théorème de transfert de la somme des moments de forces

extérieures (12.24) s’écrit,∑
M ext

O = OG×MAG +
∑

M ext
G =

∑
RG × F ext +

∑
M ext

G (12.25)

Ainsi, la somme des moments de forces extérieures
∑
M ext

O du solide indéformable évalué

par rapport à l’origine O est la somme des moments de forces extérieures exercés sur le

centre de masse
∑
RG × F ext et la somme des moments de forces extérieures

∑
M ext

G

exercés sur le solide indéformable et évalués par rapport au centre de masse G. Compte tenu

des théorèmes de transfert (12.24) et (12.25) de la somme des moments de forces extérieures,∑
M ext

P = −OP ×M AG +
∑

M ext
O = (OG− OP )×M AG +

∑
M ext

G (12.26)

Par conséquent, le théorème de transfert de la somme des moments de forces extérieures

affirme que la somme des moments de forces extérieures M ext
P exercés sur le solide

indéformable et évalués par rapport à un point P quelconque est exprimée en fonction

de la somme des moments de forces extérieures
∑
M ext

G exercés sur le solide indéformable

et évalués par rapport au centre de masse G comme,∑
M ext

P = PG×MAG +
∑

M ext
G (12.27)

Le théorème de transfert de la somme des moments de forces extérieures (12.21) évalué au

point de contact C entre le solide indéformable et la surface sur laquelle il roule s’écrit,∑
M ext

C = CG×MAG +
∑

M ext
G (12.28)
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12.2.3 Théorèmes du moment cinétique par rapport à un point

Compte tenu du fait que la masse M du solide indéformable est constante, la dérivée

temporelle du théorème de transfert du moment cinétique (12.18) s’écrit,

L̇O = ṘP ×M VG +RP ×M V̇G + L̇P (12.29)

En substituant le théorème du moment cinétique (12.16) évalué par rapport au point O dans

la dérivée temporelle du moment cinétique (12.29) évaluée par rapport au point O, compte

tenu des identités VP = ṘP et AG = V̇G, on obtient,∑
M ext

O = VP ×M VG +RP ×M AG + L̇P (12.30)

En identifiant les membres de droites des relations (12.24) et (12.30), on obtient le théorème

du moment cinétique évalué par rapport au point P qui appartient au solide,∑
M ext

P = L̇P + VP ×M VG (12.31)

Pour le centre de masse G, le théorème du moment cinétique (12.31) se réduit à,∑
M ext

G = L̇G (12.32)

Pour le point de contact C entre le solide indéformable et la surface sur laquelle il roule sans

glisser, compte tenu de la condition de roulement sans glissement,

VC = 0 (12.33)

le théorème du moment cinétique (12.31) se réduit à,∑
M ext

C = L̇C (12.34)

12.3 Tenseur d’inertie et équations d’Euler

La quantité de mouvement du solide indéformable P est liée à la vitesse du centre de

masse VG par la relation phénoménologique (11.88),

P =M VG (12.35)

où la masse du solide M est la constante de proportionnalité entre les vecteurs colinéaires

P et VG. On aimerait trouver une relation phénoménologique similaire pour lier le moment

cinétique du solide indéformable LG, évalué par rapport à son centre de masse G, à sa

vitesse angulaire de rotation Ω. Dans le cas général, le vecteur moment cinétique LG n’est

pas nécessairement colinéaire au vecteur Ω. Ces vecteurs sont donc liés par une application

linéaire appelée le tenseur d’inertie IG du solide indéformable par rapport au centre de masse

G, qui est représenté par une matrice 3× 3. Ainsi, la relation phénoménologique s’écrit,

LG = IGΩ (12.36)

Sur le plan formel, un tenseur est une application linéaire qui se transforme de manière

particulière lors d’un changement de référentiel.

12.3.1 Tenseur d’inertie

Compte tenu du théorème de transfert du moment cinétique (12.19), du moment

cinétique (11.80) évalué à l’origine O et de la quantité de mouvement totale (11.88), le

moment cinétique LG évalué au centre de masse G s’écrit,

LG = LO − RG × P =
∑
α

(OP α − OG)×mαvα =
∑
α

GP α ×mαvα (12.37)

L’identité entre les vitesses (12.7) pour un point Pα qui appartient au solide et le centre de

masse du solide G s’écrit,

vα = VG +Ω×GP α (12.38)
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Compte tenu des relations (12.40) et (12.38), le moment cinétique du solide indéformable

LG, évalué par rapport à son centre de masse G, s’écrit,

LG =
∑
α

GP α ×mα (V G +Ω×GP α)

=

(∑
α

mαGP α

)
× V G +

∑
α

mαGP α × (Ω×GP α)

(12.39)

A l’aide de la condition cinématique (11.70), le moment cinétique (12.39) se réduit à,

LG =
∑
α

mαGP α × (Ω×GP α) (12.40)

Compte tenu de l’identité vectorielle (1.44),

GP α × (Ω×GP α) = GP
2
αΩ− (GP α ·Ω)GP α (12.41)

le moment cinétique LG peut être mise sous la forme suivante,

LG =
∑
α

mα

(
GP 2

αΩ− (GP α ·Ω)GP α

)
(12.42)

Pour déterminer l’expression du tenseur d’inertie IG, on va à présent projeter le moment

cinétique LG selon les vecteurs de base ŷ1, ŷ2 et ŷ3 du repère cartésien lié au solide. La

décomposition du vecteur Ω dans cette base s’écrit,

Ω =

3∑
j=1

Ωj ŷj =

3∑
j=1

(
Ω · ŷj

)
ŷj (12.43)

Compte tenu de la décomposition (12.43), la composante LG,i = ŷi ·LG du moment cinétique

s’écrit,

ŷi ·LG =
∑
α

mα

(
GP 2

α (ŷi ·Ω)− (ŷi ·GP α) (GP α ·Ω)
)

=

3∑
j=1

∑
α

mα

(
GP 2

α

(
ŷi · ŷj

)
− (ŷi ·GP α)

(
GP α · ŷj

)) (
Ω · ŷj

) (12.44)

Le moment cinétique LG est l’image du vecteur vitesse angulaire Ω par l’application linéaire

tenseur d’inertie IG

ŷi ·LG = ŷi ·
3∑
j=1

(∑
α

mα

(
GP 2

α 1 − GP α ⊗GP α

)
ŷj

)(
Ω · ŷj

)
= ŷi ·

3∑
j=1

(
IG ŷj

) (
Ω · ŷj

)
= ŷi · (IGΩ)

(12.45)

où 1 est l’application linéaire identité qui envoie tout vecteur sur lui-même et le symbole ⊗
représente un produit tensoriel. Le tenseur d’inertie IG du solide par rapport au centre

de masse G s’écrit donc formellement,

IG =
∑
α

mα

(
GP 2

α 1 − GP α ⊗GP α

)
(12.46)

L’application linéaire GP 2
α 1 est représentée par la matrice diagonale 3× 3 de composantes∑3

k=1GP
2
α,k δij dans la base (ŷ1, ŷ2, ŷ3). L’application linéaire GP α⊗GP α est représentée

par la matrice symétrique 3 × 3 de composantes GPα,iGPα,j dans la base (ŷ1, ŷ2, ŷ3).

La composante LG,i du moment cinétique s’écrit en composantes dans la base (ŷ1, ŷ2, ŷ3)

comme,

LG,i =

3∑
j=1

IG,ij Ωj (12.47)
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où les composantes IG,ij de la matrice 3 × 3 qui représente le tenseur d’inertie IG dans la

base (ŷ1, ŷ2, ŷ3) s’écrivent,

IG,ij =
∑
α

mα

(
3∑
k=1

GP 2
α,k δij − GPα,iGPα,j

)
(12.48)

Les composantes diagonales IG,11, IG,22 et IG,33 du tenseur d’inertie IG s’écrivent,

IG,11 =
∑
α

mα

(
GP 2

α,2 +GP 2
α,3

)
≡
∑
α

mα r
2
α,23

IG,22 =
∑
α

mα

(
GP 2

α,3 +GP 2
α,1

)
≡
∑
α

mα r
2
α,31

IG,33 =
∑
α

mα

(
GP 2

α,1 +GP 2
α,2

)
≡
∑
α

mα r
2
α,12

(12.49)

où r 2
α,23 est la distance du point Pα à l’axe Gy1, r

2
α,31 est la distance de ce point à l’axe Gy2

et r 2
α,12 est la distance de ce point à l’axe Gy3 (Fig 12.8).

y3

y1

G y2

GPa

ra,12

Figure 12.8 Distance rα,12 d’un point Pα à l’axe Gy3.

12.3.2 Moments d’inertie et axes principaux d’inertie

Les composantes IG,ij du tenseur d’inertie sont les éléments d’une matrice symétrique

3× 3 à coefficients réels, c’est-à-dire IG,ij = IG,ji. D’après le théorème spectral d’algèbre

linéaire, une matrice symétrique à coefficients réels est diagonalisable. Par conséquent, il

existe une base orthonormée directe de vecteurs (ê1, ê2, ê3) liés au solide par rapport à

laquelle le tenseur d’inertie est diagonal. Le repère cartésien (ê1, ê2, ê3) est appelé le repère

d’inertie et les axes Ge1, Ge2, Ge3 sont appelés les axes principaux d’inertie. Par

rapport au repère d’inertie, la relation phénoménologique (12.36) s’écrit en composantes

comme,e1^

G
e3

e2^

^

Repère d’inertie
LG,1LG,2
LG,3

 =

IG,1 0 0

0 IG,2 0

0 0 IG,3

Ω1

Ω2

Ω3

 (12.50)

de manière vectorielle comme,

LG =

3∑
i=1

LG,i êi =

3∑
i=1

IG,iΩi êi (12.51)

et sous forme développée comme,

LG = IG,1 Ω1 ê1 + IG,2 Ω2 ê2 + IG,3 Ω3 ê3 (12.52)
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Les valeurs propres du tenseur d’inertie IG,1, IG,2 et IG,3 sont appelées lesmoments d’iner-

tie et les vecteurs propres correspondants ê1, ê2 ê3 sont les vecteurs de norme unité orientés

le long des axes principaux d’inertie. Les moments d’inertie sont exprimés comme,

IG,1 =
∑
α

mα r
2
α,1 IG,2 =

∑
α

mα r
2
α,2 IG,3 =

∑
α

mα r
2
α,3 (12.53)

où r 2
α,1 est la distance du point Pα à l’axe principal d’inertie Ge1, r

2
α,2 est la distance de

ce point à l’axe principal d’inertie Ge2 et r 2
α,3 est la distance de ce point à l’axe principal

d’inertie Ge3.

Il existe trois types de solides indéformables, homogènes et réguliers. Le premier type est

l’ellipsöıde pour lequel les trois moments d’inertie sont différents. Le deuxième type est le

cylindre pour lequel le moment d’inertie IG∥ le long de l’axe de symétrie est différent des

deux moments d’inertie IG⊥ perpendiculaires à cet axe qui sont égaux. Le troisième type

est la sphère pour laquelle les trois moments d’inertie sont égaux (Fig. 12.9).

Figure 12.9 Ellipsöıde (trois moments d’inertie différents), cylindre (deux moments
d’inertie différents) et sphère (trois moments d’inertie égaux).

En absence de moment de force extérieures résultant par rapport au centre de masse G,

c’est-à-dire M ext
G = 0, le théorème du moment cinétique implique que le moment cinétique

par rapport au centre de masse est conservé, c’est-à-dire LG = cste. Si le solide a un mou-

vement de rotation de vitesse angulaire Ω = Ω3 ê3 autour de l’axe vertical alors le moment

cinétique (12.52) s’exprime comme LG = IG,3 Ω3 ê3. Par conséquent, si le moment d’inertie

IG,3 augmente, la vitesse angulaire de rotation Ω3 diminue et vice versa. Le moment d’inertie

augmente si une partie de la masse du solide s’éloigne de l’axe. Les patineuses artistiques

utilisent cet effet pour accélérer ou freiner leur mouvement de rotation (Fig. 12.10).

Figure 12.10 Le moment d’inertie par rapport à l’axe vertical est plus grand lorsque les
haltères sont plus éloignées de l’axe de rotation du tabouret. En variant la distance des
haltères à l’axe de rotation, on varie la vitesse de rotation angulaire.

12.3.3 Equations d’Euler

Le repère d’inertie (ê1, ê2, ê3) lié au solide est un repère mobile. Les dérivées temporelles

des vecteurs de base satisfont les formules de Poisson,

˙̂ei = Ω× êi ∀ i = 1, 2, 3 (12.54)

Pour un solide indéformable, les moments d’inertie sont constants,

İG,i = 0 ∀ i = 1, 2, 3 (12.55)

https://www.youtube.com/watch?v=G6XSK72zZJc
https://www.youtube.com/watch?v=G6XSK72zZJc
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Compte tenu de la formule de Poisson (12.54), la dérivée temporelle du moment

cinétique (12.52) s’écrit alors,

L̇G =

3∑
i=1

IG,i Ω̇i êi +

3∑
i=1

IG,iΩi ˙̂ei =

3∑
i=1

IG,i Ω̇i êi +Ω×
(

3∑
i=1

IG,iΩi êi

)

=

3∑
i=1

IG,i Ω̇i êi +Ω×LG
(12.56)

Dans le cas particulier où la vitesse angulaire est constante par rapport au repère d’inertie,

c’est-à-dire Ω̇1 = Ω̇2 = Ω̇3 = 0, compte tenu de l’expression (12.52) du moment cinétique,

la relation (12.56) se réduit à,

L̇G = Ω×LG (12.57)

et décrit la précession du vecteur LG autour du vecteur Ω. Dans le cas général, la rela-

tion (12.56) est mise sous la forme suivante,

L̇G = IG,1 Ω̇1 ê1 + IG,2 Ω̇2 ê2 + IG,3 Ω̇3 ê3

+ (Ω1 ê1 +Ω2 ê2 +Ω3 ê3)× (IG,1 Ω1 ê1 + IG,2 Ω2 ê2 + IG,3 Ω3 ê3)

= IG,1 Ω̇1 ê1 + IG,2 Ω̇2 ê2 + IG,3 Ω̇3 ê3 + (IG,3 − IG,2) Ω3 Ω2 ê1

+ (IG,1 − IG,3) Ω1 Ω3 ê2 + (IG,2 − IG,1) Ω2 Ω1 ê3

(12.58)

La somme des moments de forces extérieures M ext
G se décompose dans le repère d’inertie

comme, ∑
M ext

G =
∑

M ext
G,1 ê1 +

∑
M ext
G,2 ê2 +

∑
M ext
G,3 ê3 (12.59)

En substituant les expressions (12.58) et (12.59) dans le théorème du moment

cinétique (12.32) et en le projetant ensuite selon les axes de coordonnées Ge1, Ge2 et Ge3,

on obtient les équations d’Euler qui déterminent le mouvement de rotation propre du

solide indéformable,

Leonhard Euler
∑

M ext
G,1 = IG,1 Ω̇1 + (IG,3 − IG,2) Ω3 Ω2∑

M ext
G,2 = IG,2 Ω̇2 + (IG,1 − IG,3) Ω1 Ω3∑

M ext
G,3 = IG,3 Ω̇3 + (IG,2 − IG,1) Ω2 Ω1

(12.60)

Les premiers termes des membres de droite des équations d’Euler (12.60) sont l’analogue

des termes obtenus par projection du théorème de la quantité de mouvement (12.15) selon

les axes principaux d’inertie, ∑
F ext
1 =M V̇G,1∑
F ext
2 =M V̇G,2∑
F ext
3 =M V̇G,3

(12.61)

La cause de l’accélération V̇G du centre de masse G du solide indéformable est la résultante

des forces extérieures F ext appliquées sur ce solide. De manière analogue, la cause de

l’accélération angulaire de rotation propre Ω̇ du solide indéformable autour d’un des axes

principaux d’inertie passant par son centre de masse G est la résultante des moments de

forces extérieures M ext
G évaluée par rapport au centre de masse G. La masse M rend

compte de la résistance du centre de masse G du solide indéformable à sa mise en mouve-

ment. De manière similaire, le moment d’inertie IG,i rend compte de la résistance du solide

indéformable à sa mise en mouvement de rotation propre autour de l’axe principal d’inertie

G êi. Les deuxièmes termes des membres de droite des équations d’Euler (12.60) n’ont pas

d’analogue dans l’expression du théorème de la quantité de mouvement. Ils décrivent le mou-

vement de précession du vecteur moment cinétique LG autour du vecteur vitesse angulaire

Ω qui peut avoir lieu parce que le moment cinétique LG n’est pas colinéaire à la vitesse

angulaire de rotation propre Ω. Or, il n’y a pas de mouvement de précession possible du

https://fr.wikipedia.org/wiki/Leonhard_Euler
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vecteur quantité de mouvement P autour du vecteur vitesse du centre de masse VG car ces

deux vecteurs sont colinéaires.
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