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Cinématique et dynamique du solide
indéformable

Au chapitre 2, on a établi la cinématique et la dynamique du point matériel. Dans ce
chapitre, on va étendre ce modele pour considérer la cinématique et la dynamique du solide
indéformable. La premiere section est consacrée a la cinématique du solide indéformable et
la deuxiéme section est consacrée a la dynamique du solide indéformable. La derniére section
est consacrée au tenseur d’inertie et aux équations d’Fuler.

12.1 Cinématique du solide indéformable

Au chapitre 2, on a défini le modele du point matériel. Dans ce modele, on attribue toute
la masse d’un objet & un point qui correspond au centre de masse de ’objet. Dans ce modele,
la cinématique et la dynamique de 1’objet sont entierement déterminées par le mouvement
du point matériel. En d’autres termes, on ne tient pas compte du changement d’orientation
de l'objet lors de son mouvement, ce qui signifie que I'on ignore ou néglige le mouvement de
rotation propre de l'objet sur lui-méme autour d’un axe passant par son centre de masse.
C’est la raison pour la laquelle on introduit & présent un modele plus général qui permet
de rendre compte de l'orientation du solide au cours du temps. Ce modele est le solide
indéformable (Fig. 12.1).

FIGURE 12.1 Sur l'image de gauche, le centre de masse du cube a un mouvement de
rotation par rapport au point O, mais il n’y a pas de mouvement de rotation propre du
cube. Sur I'image de droite, le cube a un mouvement de rotation propre autour de son
centre de masse, car la figure allégorique Helvetia change d’orientation. Ce cube est un
solide indéformable que 'on peut considérer comme un référentiel.

12.1.1 Solide indéformable

Un solide indéformable est un systeme constitué d’'un ensemble de points matériels
dont les distances relatives sont constantes. Comme les distances sont constantes, le solide
indéformable ne change ni de volume ni de forme mais uniquement d’orientation spatiale.
Les référentiels sont des solides indéformables. Les déformations élastiques et plastiques des
solides sont le domaine d’étude de la résistance des matériaux qui dépasse largement le cadre
de ce cours.
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Théoréme 12.1 6 coordonnées sont nécessaires pour déterminer entiérement la position
et lorientation d’un solide indéformable de forme quelconque par rapport a un référentiel
donné.

Démonstration Un solide indéformable peut étre considéré comme un référentiel. On peut
donc complétement déterminer la position et 'orientation de tout solide indéformable &
I’aide de 4 points matériels non-coplanaires. On peut donc considérer un tétraedre régulier
de longueur d’aréte r dont les sommets sont les points matériels A, B, C et D, ce qui
implique qu’il y a une distance r entre chaque couple de points. L’orientation respective des
points A, B, C et D est choisie telle que (AB x AC) - AD > 0.

Pour déterminer la position du point A, il faut 3 coordonnées, par exemple des coordonnées
cartésiennes. Le point matériel B se trouve sur la sphere de rayon r centrée au point A. Il faut
donc 2 coordonnées supplémentaires pour déterminer la position du point B, par exemple
deux angles. Le point matériel C' se trouve sur le cercle obtenu par intersection entre les
spheres de rayon r centrées en A et B. Il faut donc 1 coordonnée supplémentaire pour
déterminer la position du point C, par exemple un angle. Le point matériel D se trouve
au point d’intersection entre les sphéres de rayon r centrées en A, B et C. A priori, il y a
deux points possibles de part et d’autre du plan ABC. Cependant, la condition d’orientation
respective des points matériels A, B, C et D détermine de quel c6té du plan ABC se trouve
le point D. Le point D est donc entierement déterminé une fois que la position des points A,
B et C est connue. Il faut donc 6 coordonnées pour déterminer la position et ’orientation
d’un solide indéformable par rapport a un référentiel donné. O

12.1.2 Angles d’Euler

L’orientation d’un solide indéformable peut étre repérée par des angles particuliers appelés
angles d’FEuler. Pour déterminer ces angles, on considére un repére cartésien (&1, &a, £3)
associé au référentiel d’inertie et un repeére cartésien (g1, 9, ¥5) associé au référentiel accéléré
du solide en rotation autour du point O. Les angles d’Euler sont définis comme les trois
angles de rotation (¢, 6,1) qui amenent le repére cartésien (&1, &2, &3) sur le repére cartésien

(g17g27ﬂ3)'

FIGURE 12.2 Reperes cartésiens (&1, &2, &3) et (1, Yo, Y3) centrés en O et angles d’Euler

(¢,0,9).

Le premier angle d’Euler est I’angle de précession ¢ autour de I’axe vertical Oz3 qui amene
laxe horizontal Oz, sur I’aze nodal Ou (Fig. 12.3a). Le second angle d’Euler est 'angle de
nutation @ autour de ’axe nodal Ou qui améne ’axe vertical Oxg sur axe Oys (Fig. 12.3b).
Le troisieme angle d’Euler est 'angle de rotation propre v autour de I’axe de rotation propre
Oys qui amene 'axe Ou sur 'axe Oy; et 'axe Ov sur Paxe Oys (Fig. 12.3c).

En général, les rotations ne s’additionnent pas car ce sont des applications linéaires des
vecteurs de bases représentées par des matrices 3 X 3 qui ne commutent pas. En revanche, les
rotations infinitésimales commutent toujours. Le vecteur vitesse angulaire € de rotation du
solide par rapport au référentiel d’inertie est défini a ’aide des formules de Poisson (10.23) —
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(b) Rotation d’angle 6 autour de 1'axe Ou (c¢) Rotation d’angle 1) autour de axe Oys

FIGURE 12.3 Rotations successives (a), (b) et (c) qui définissent les trois angles d’Euler

(¢,0,9).

décrivant des rotations infinitésimales au cours du temps — donnant les dérivées temporelles
des vecteurs de base du repere lié au solide. Par conséquent, la vitesse angulaire du solide
€ — qui est un référentiel accéléré — par rapport au référentiel d’inertie peut étre exprimée
comme la somme de trois vecteurs vitesse angulaire dont la norme est la dérivée temporelle
d’un angle d’Euler et dont I'orientation est donnée par ’axe de rotation correspondant,

Q=0¢+0+v =@z +0a+17s (12.1)

Le vecteur ¢ est la vitesse angulaire de précession du solide indéformable autour de
I’axe vertical Oxz3. Le vecteur 6 est la vitesse angulaire de nutation du solide indéformable
autour de 'axe nodal Ou et le vecteur 't/: est la vitesse angulaire de rotation propre du
solide indéformable autour de I’axe de rotation propre Oys.

Ces mouvements de précession, de nutation et de rotation propre sont bien illustrées par
le gyroscope formé d’une sphere sur coussin d’air (Fig. 12.4).

FIGURE 12.4 Gyroscope a spheére sur coussin d’air.

Comme autres illustrations de ces mouvements, on peut mentionner la toupie chinoise,
qui peut se retourner sur sa pointe par nutation, et le disque d’Euler ou la vitesse angulaire
du point de contact avec une surface plane diverge lorsqu’il s’aréte (Fig. 12.5).
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FIGURE 12.5 Toupie chinoise qui se retourne sur sa pointe et disque d’Euler.

12.1.3 Angles de Tait-Bryan

Une variante des angles d’Euler connue sous le nom d’angles de Tait-Bryan est utilisée
en aéronautique. L’axe de précession s’appelle 'axe de lacet, I'axe de nutation porte le
nom d’axe de tangage et 'axe de rotation propre s’appelle de I’axze de roulis (Fig. 12.6).

Axe de tangage Axe de lacet

FIGURE 12.6 Angles de Tait-Bryan décrivant les lacets (précession), le tangage (nutation)
et le roulis (rotation propre)

12.1.4 Vitesse et accélération d’un point du solide indéformable

On considére un repére cartésien (&1, &2, &3) lié au référentiel d’inertie absolu qui est
immobile et un repére cartésien (g, ¥y, ¥5) lié au référentiel relatif du solide indéformable
qui est en rotation & vitesse angulaire © par rapport au référentiel absolu (Fig. 10.4). On
almerait exprimer la vitesse d’'un point matériel P quelconque du solide en fonction de la
vitesse du point matériel A a l'origine du repere et de la vitesse angulaire €2 qui rend compte
du changement d’orientation du solide par rapport au référentiel d’inertie. Comme le solide
est indéformable et que le point matériel P appartient au solide, sa vitesse relative et son
accélération relative sont nulles,

v, (P)=0 et a-(P)=0 (12.2)
Pour alléger I’écriture, on dénote la position relative du point P et les vitesses et accélérations
absolues des points A et P comme,
AP =r,.(P) Vi =0, (4) Vp = v, (P) (12.3)
As=a,(A) Ap=a,(P)

Compte tenu des conditions (12.2) et de la notation (12.3), I'identité entre les vitesses (10.29)
— obtenue dans le cadre du mouvement relatif — pour un solide indéformable se réduit &,

Vp=V4+Qx AP (12.4)


https://www.youtube.com/watch?v=cXNEdpRdgGI
https://www.youtube.com/watch?v=sCYNnCPRF4k
https://fr.wikipedia.org/wiki/Peter_Guthrie_Tait

12.1. CINEMATIQUE DU SOLIDE INDEFORMABLE 163

Comme le point @ est un point matériel quelconque du solide au méme titre que le point
P, l'identité (12.4) implique que,

Vo=Va+QxAQ (12.5)
La différence entre les relations (12.5) et (12.4) s’écrit,
Vo—-Vp=Qx(AQ — AP)=Q x PQ (12.6)
Cette relation est remise en forme comme,
Vo=Vp+QxPQ (12.7)

Compte tenu des conditions (12.2) et de la notation (12.3), lidentité entre les
accélérations (10.43) pour un solide indéformable se réduit a,

Ap=A +Qx (2 x AP)+Q x AP (12.8)

Comme le point Q) est un point matériel quelconque du solide au méme titre que le point
P, Tidentité (12.8) implique que,

Ag=As+Qx (2 x AQ) + Q2 x AQ (12.9)
La différence entre les relations (12.9) et (12.8) s’écrit,

AQ—AP:nx(nx(AQ—AP))+Q><(AQ—AP)

. (12.10)
=Qx (2 xPQ)+ Q2 x PQ
Cette relation est remise en forme comme,
Ag=Ap+Qx (2x PQ)+ N x PQ (12.11)

12.1.5 Roulement et glissement

Sur le plan pratique, on est souvent confronté a des solides indéformables qui roulent sur
une surface horizontale ou un plan incliné. Ces solides sont en général des cylindres ou des
spheres. La cinématique de ce roulement peut étre décrite dans le plan vertical qui passe
par le centre de masse G de I'objet. Dans ce plan, 'objet en coupe est un cercle. Le point
matériel C' est le point de contact entre le cercle et la surface (Fig. 12.7).

C

F1GURE 12.7 Roulement et glissement d’un solide

Le roulement et le glissement d’un solide indéformable sont caractérisés par la rela-
tion (12.7) qui lie la vitesse du centre de masse Vi a la vitesse du point de contact Vi
entre le solide et la surface,

Ve=Vo+QxCG (roulement avec glissement) (12.12)

ou on a procédé a l'identification suivante des points du solide G = @ et C' = P. Ainsi, si
premierement le solide glisse et roule, la vitesse du point de contact V¢ et la vitesse du centre
de masse Vg sont non-nulles, mais elles ne sont pas égales di au mouvement de roulement
du solide. Deuxiemement, si le solide glisse sans rouler, son orientation ne change ce qui
signifie que la vitesse angulaire est nulle, c’est-a-dire £ = 0. Ainsi, la condition (12.12) se
réduit a la condition de glissement sans roulement est

Ve =Ve (glissement sans roulement) (12.13)
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Troisiemement, si le solide roule sans glisser, la vitesse du point de contact est nulle, c¢’est-
a-dire Vo = 0, mais la vitesse du centre de masse Vz est non nulle di au roulement. Par
conséquent, d’apres la relation (12.7), la condition de roulement sans glissement (12.7)
s’écrit explicitement,

Vo= xCG (roulement sans glissement) (12.14)

Lorsque le solide roule, le point matériel qui correspond au point de contact C' entre le solide
et la surface change au cours du temps lors d’'un mouvement de roulement sans glissement,
mais a chaque instant la vitesse Vi de ce point est nulle.

12.2 Dynamique du solide indéformable

Etant donné qu’un solide indéformable est un ensemble de points matériels dont les dis-
tances relatives sont fixes, le théoreme de la quantité de mouvement (11.91) et le théoreme
du centre de masse (11.93) pour un solide indéformable sont identiques & ceux obtenus pour
un systeme fermé de points matériels,

> F**=P=MAg ca P=MVg et M=cste (12.15)

De maniere similaire, par rapport a un point fixe O du référentiel d’inertie, c’est-a-dire
Vo = 0, le théoréme de la quantité de mouvement (11.95) pour un solide indéformable est
identique a celui obtenu pour un systeme fermé de points matériels,

> MG = Lo (12.16)

Le théoréme du moment cinétique (12.16) dépend du point par rapport auquel le moment
cinétique et le moment de force résultant sont évalués. On aimerait a présent généraliser
ce théoreme a un point quelconque P qui appartient au solide et en particulier au centre
de masse G. Pour ce faire, on doit d’abord établir les théoremes de transfert du moment
cinétique et du moment de forces extérieures résultants.

12.2.1 Théorémes de transfert du moment cinétique

Pour un solide indéformable qui est un systeme fermé de points matériels P, la quantité de
mouvement totale et le moment cinétique total sont la somme des quantités de mouvement
et des moments cinétique des points matériels (11.87). Compte tenu des relations (11.80)
et (11.88), le moment cinétique total s’écrit,

Lo=)» OP.,xp,=>» (OP+PP,) xp,

“ (12.17)
=OP xP+)» PP,x p,=0PxMVg+Lp

Ainsi, le théoréeme de transfert du moment cinétique affirme que le moment cinétique Lo
du solide indéformable évalué par rapport a lorigine O du référentiel d’inertie est exprimé
en fonction du moment cinétique Lp du solide évalué par rapport a un point quelconque P
du solide indéformable comme,

Lo=0OPxMVg+Lp=RpxP+ Lp (12.18)

Pour le centre de masse G, le théoréme de transfert du moment cinétique (12.18) s’appelle
le théoreme de Konig et s’écrit,

Lo=0GxMVg+Ls=RgxP+ Lg (1219)

Ainsi, le moment cinétique Lo du solide indéformable évalué par rapport a l'origine O
est la somme du moment cinétique Rg X P du centre de masse lié au mouvement du
centre de masse et du moment cinétique L lié au mouvement de rotation propre du solide
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indéformable autour du centre de masse. Compte tenu des théoremes de transfert (12.18)
et (12.19) du moment cinétique,

Lp=—0OPXxMVg+ Lo =(0G—- OP)x MVg+ Lg (12.20)

Par conséquent, le théoréeme de transfert du moment cinétique affirme que le moment
cinétique Lp du solide indéformable évalué par rapport a un point P quelconque est exprimé
en fonction du moment cinétique Lg du solide indéformable évalué par rapport au centre
de masse G comme,

Lp=PGx MVg+ Lg (12.21)

Le théoréme de transfert du moment cinétique (12.21) évalué au point de contact C' entre
le solide indéformable et la surface sur laquelle il roule s’écrit,

Lo =CGx MVg+ L (12.22)

12.2.2 Théorémes de transfert de moments de force

Pour un solide indéformable qui est un systéeme fermé de points matériels P,, la somme des
forces extérieures et la somme des moments de forces extérieures sont obtenues en sommant
sur I’ensemble des points matériels (11.89). Compte tenu des relations (11.81) et (11.93), la
somme des moments de forces extérieures s’écrit,

> MEt = ZOP x FO* =Y " (OP+PP,) x F*

(6%
(12.23)
=OPx) F™ 4> PP, xF{*=0PxMAg+Y» Mp*

Ainsi, le théoréeme de transfert de la somme des moments de forces extérieures affirme que
la somme des moments de forces extérieures Y. M5 exercés sur le solide indéformable et
évalués par rapport a l'origine O du référentiel d’inertie est exprimé en fonction de la somme
des moments de forces extérieures S M 5 exercés sur le solide indéformable et évalués par
rapport & un point quelconque P du solide indéformable comme,

> ME ' =0PxMAg+> Mp*=> RpxF>'+> Mp" (12.24)

Pour le centre de masse G, le théoreme de transfert de la somme des moments de forces
extérieures (12.24) s’écrit,

YN MG =0G x MAc+> ME' =3 RoxF™+Y Mg (12.25)

Ainsi, la somme des moments de forces extérieures > M S du solide indéformable évalué
par rapport a 'origine O est la somme des moments de forces extérieures exercés sur le
centre de masse > Rg x F** et la somme des moments de forces extérieures > M &
exercés sur le solide indéformable et évalués par rapport au centre de masse G. Compte tenu
des théorémes de transfert (12.24) et (12.25) de la somme des moments de forces extérieures,

SN Mt =-0PxMAc+Y MG =(0G— OP)x MAg+Y M&" (12.26)

Par conséquent, le théoreme de transfert de la somme des moments de forces extérieures
affirme que la somme des moments de forces extérieures M 5 exercés sur le solide
indéformable et évalués par rapport a un point P quelconque est exprimée en fonction
de la somme des moments de forces extérieures S M & exercés sur le solide indéformable
et évalués par rapport au centre de masse G comme,

> Mp'=PGxMAg+» M (12.27)

Le théoreme de transfert de la somme des moments de forces extérieures (12.21) évalué au
point de contact C' entre le solide indéformable et la surface sur laquelle il roule s’écrit,

ST ME =CGx MAg+ > ME* (12.28)
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12.2.3 Théorémes du moment cinétique par rapport & un point

Compte tenu du fait que la masse M du solide indéformable est constante, la dérivée
temporelle du théoreme de transfert du moment cinétique (12.18) s’écrit,

LO:RPXMVG+RPXMVG+LP (12.29)

En substituant le théoréeme du moment cinétique (12.16) évalué par rapport au point O dans
la dérivée temporelle du moment cinétique (12.29) évaluée par rapport au point O, compte
tenu des identités Vp = Rp et Ag = Vg, on obtient,

> ME'=Vpx MVg+ Rp x M Ag + Lp (12.30)

En identifiant les membres de droites des relations (12.24) et (12.30), on obtient le théoréme
du moment cinétique évalué par rapport au point P qui appartient au solide,

S Mt =Lp+VpxMVg (12.31)
Pour le centre de masse G, le théoréme du moment cinétique (12.31) se réduit a,

> MG =Lg (12.32)

Pour le point de contact C entre le solide indéformable et la surface sur laquelle il roule sans
glisser, compte tenu de la condition de roulement sans glissement,

Ve =0 (12.33)
le théoreme du moment cinétique (12.31) se réduit a,

> MG =L (12.34)

12.3 Tenseur d’inertie et équations d’Euler

La quantité de mouvement du solide indéformable P est liée a la vitesse du centre de
masse Vg par la relation phénoménologique (11.88),

P=MVg (12.35)

ou la masse du solide M est la constante de proportionnalité entre les vecteurs colinéaires
P et V. On aimerait trouver une relation phénoménologique similaire pour lier le moment
cinétique du solide indéformable L¢, évalué par rapport a son centre de masse G, a sa
vitesse angulaire de rotation 2. Dans le cas général, le vecteur moment cinétique Lg n’est
pas nécessairement colinéaire au vecteur 2. Ces vecteurs sont donc liés par une application
linéaire appelée le tenseur d’inertie |5 du solide indéformable par rapport au centre de masse
G, qui est représenté par une matrice 3 x 3. Ainsi, la relation phénoménologique s’écrit,

Lo=1c9 (12.36)

Sur le plan formel, un tenseur est une application linéaire qui se transforme de maniere
particuliére lors d’un changement de référentiel.

12.3.1 Tenseur d’inertie

Compte tenu du théoreme de transfert du moment cinétique (12.19), du moment
cinétique (11.80) évalué & l'origine O et de la quantité de mouvement totale (11.88), le
moment cinétique Lg évalué au centre de masse G s’écrit,

Lo=Lo- RexP=) (OP,— OG) xmavs =Y  GPy x mav, (12.37)

L’identité entre les vitesses (12.7) pour un point P, qui appartient au solide et le centre de
masse du solide G s’écrit,
Vo = Vg + Q2 x GP,, (12.38)
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Compte tenu des relations (12.40) et (12.38), le moment cinétique du solide indéformable
L, évalué par rapport a son centre de masse G, s’écrit,

Lo=) GP,xms(Va+QxGP,)

(12.39)
= (Z Ma GPQ> xVa+ Y maGPyx (2 x GP,)

A Taide de la condition cinématique (11.70), le moment cinétique (12.39) se réduit a,

Lg = Z ma GPy x (2 x GP,) (12.40)

Compte tenu de l'identité vectorielle (1.44),
GP, x (2 xGP,)=GP2Q - (GP, -Q)GP,, (12.41)
le moment cinétique L¢ peut étre mise sous la forme suivante,
Lo=Y ma (Gpg Q- (GP, - Q) GPa) (12.42)
@

Pour déterminer ’expression du tenseur d’inertie g, on va a présent projeter le moment
cinétique Lq selon les vecteurs de base 9, U5 et g3 du repere cartésien lié au solide. La
décomposition du vecteur €2 dans cette base s’écrit,

3

3
Q:ZQj g,=> (Q-9;)9, (12.43)

J=1

Compte tenu de la décomposition (12.43), la composante L ; = §,-Le du moment cinétique
s’écrit,

9 Lo =Y ma (GP2 (g, Q) — (5 - GP.) (GP. - Q)

3 (12.44)
=" ma (GP2(3:-9;) = (3 GPo) (GPa-14,)) (2-;)

Le moment cinétique L est I'image du vecteur vitesse angulaire 2 par I'application linéaire
tenseur d’inertie lg

3
g La=9,-3 (Z ma (GP21—- GP,®GP,) gj> (@-3))

j=1 a

5 (12.45)
:@ioz (Ic9;) (2-9;) =9; - (e Q)

ou 1 est 'application linéaire identité qui envoie tout vecteur sur lui-méme et le symbole ®
représente un produit tensoriel. Le tenseur d’inertie |l du solide par rapport au centre
de masse G s’écrit donc formellement,

lo=> ms (GP.1- GP,®GP,) (12.46)

(e

L’application linéaire GPQ2 1 est représentée par la matrice diagonale 3 x 3 de composantes
Zi:l GPaQ’k 0;; dans la base (91, s, ¥s3). L’application linéaire GP, ® GP,, est représentée
par la matrice symétrique 3 x 3 de composantes GP,; GP, ; dans la base (9,7, Us3)-
La composante L¢ ; du moment cinétique s’écrit en composantes dans la base (g, ¥y, Us3)
comie,

3
Lg:= Z Ig iy (12.47)
j=1
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ot les composantes I ;; de la matrice 3 x 3 qui représente le tenseur d’inertie lg dans la
base (:'313 gQa i’a) S’écrivent,

3
IG,ij = Z My ( Z GPaQ,k 51-]- - GPOLJ‘ G.Pa’j> (1248)
« k=1
Les composantes diagonales I¢ 11, Ig,22 et Ig,33 du tenseur d’inertie lg s’écrivent,

Ig11 = Z Me (GPQZ)Q + GP£3) = Z Me Tizg

[

Iga2 = Z Mg (pr,s + G‘Pag,l) = Z Ma 7“3,31 (12.49)
«

«

Ig3ss = Z mq (GP2, + GP},) = Z Ma T 1
«

«

ol 12 53 est la distance du point P, & I'axe Gy, 12 3, est la distance de ce point & I'axe Gy
et 721, est la distance de ce point a I'axe Gys (Fig 12.8).

Y3

A

GP,

i)

Ta,12

g

Y1

FIGURE 12.8 Distance 74,12 d'un point P, a 'axe Gys.

12.3.2 Moments d’inertie et axes principaux d’inertie

Les composantes Ig;; du tenseur d’inertie sont les éléments d’une matrice symétrique
3 x 3 a coefficients réels, c’est-a-dire Ig ;; = Ig ;- D’apres le théoréme spectral d’algebre
linéaire, une matrice symétrique a coefficients réels est diagonalisable. Par conséquent, il
existe une base orthonormée directe de vecteurs (€1, és,é3) liés au solide par rapport &
laquelle le tenseur d’inertie est diagonal. Le repére cartésien (é;, €z, €3) est appelé le repére
d’inertie et les axes Gey, Ges, Ges sont appelés les axes principaux d’inertie. Par
rapport au repére d’inertie, la relation phénoménologique (12.36) s’écrit en composantes

& comme,
Repere d’inertie Lg Icn O 0 0
Lgo | = 0 Ig 0 Qo (12.50)
Lags 0 0 Ig3 Qs

de maniére vectorielle comme,
3 3
Lo=) Laiéi=)Y Iq;%é (12.51)
i=1 i=1

et sous forme développée comme,

Log=1Ig1é +1g2Q28+ 1g383€é3 (12.52)
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Les valeurs propres du tenseur d’inertie I 1, Ig,2 et I 3 sont appelées les moments d’iner-
tie et les vecteurs propres correspondants é;, és € sont les vecteurs de norme unité orientés
le long des axes principaux d’inertie. Les moments d’inertie sont exprimés comme,

I, = Z Me, ril Igo= Z Moy 7'3’2 Igs = Z Mg, 7"3,3 (12.53)
« « «

ol 7‘5’1 est la distance du point P, a l'axe principal d’inertie Gey, 7"02[’2 est la distance de
ce point a l’axe principal d’inertie Ges et 7"3,3 est la distance de ce point a l’axe principal
d’inertie Ges.

Il existe trois types de solides indéformables, homogenes et réguliers. Le premier type est
Pellipsoide pour lequel les trois moments d’inertie sont différents. Le deuxieme type est le
cylindre pour lequel le moment d’inertie I le long de I'axe de symétrie est différent des
deux moments d’inertie I, perpendiculaires a cet axe qui sont égaux. Le troisieme type
est la sphére pour laquelle les trois moments d’inertie sont égaux (Fig. 12.9).

FIGURE 12.9 Ellipsoide (trois moments d’inertie différents), cylindre (deux moments
d’inertie différents) et sphere (trois moments d’inertie égaux).

En absence de moment de force extérieures résultant par rapport au centre de masse G,
c’est-a-dire M & = 0, le théoréme du moment cinétique implique que le moment cinétique
par rapport au centre de masse est conservé, c’est-a-dire Lg = cste. Si le solide a un mou-
vement de rotation de vitesse angulaire 2 = {23 é3 autour de ’axe vertical alors le moment
cinétique (12.52) s’exprime comme L = I 3 Q3 é3. Par conséquent, si le moment d’inertie
I 3 augmente, la vitesse angulaire de rotation {23 diminue et vice versa. Le moment d’inertie
augmente si une partie de la masse du solide s’éloigne de ’axe. Les patineuses artistiques

utilisent cet effet pour accélérer ou freiner leur mouvement de rotation (Fig. 12.10).

FI1GURE 12.10 Le moment d’inertie par rapport a I’axe vertical est plus grand lorsque les
halteres sont plus éloignées de ’axe de rotation du tabouret. En variant la distance des
halteres a ’axe de rotation, on varie la vitesse de rotation angulaire.

12.3.3 Equations d’Euler

Le repere d’inertie (é1, éz, €3) lié au solide est un repere mobile. Les dérivées temporelles
des vecteurs de base satisfont les formules de Poisson,

éi=Qxé vV oi=1,2,3 (12.54)

Pour un solide indéformable, les moments d’inertie sont constants,

Ig;=0 V i=1,23 (12.55)


https://www.youtube.com/watch?v=G6XSK72zZJc
https://www.youtube.com/watch?v=G6XSK72zZJc
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Compte tenu de la formule de Poisson (12.54), la dérivée temporelle du moment
cinétique (12.52) s’écrit alors,

3 3 3 3
Lg = Z IG,iQiéi+Z IG’,iQiéi = Z Ig)iQiéi—l—Q X < Z IGJ-Qiéi)
=1 i=1 i=1 i=1

(12.56)

3
:Z I é +Qx Lg
i=1
Dans le cas particulier ou la vitesse angulaire est constante par rapport au repere d’inertie,
c’est-a-dire 1 = Qs = Q3 = 0, compte tenu de 'expression (12.52) du moment cinétique,
la relation (12.56) se réduit a,

Le=Qx%Lg (12.57)

et décrit la précession du vecteur Lg autour du vecteur 2. Dans le cas général, la rela-
tion (12.56) est mise sous la forme suivante,

Lo=TIc1é + 1020 ér+ 1630363
+(Qé1+Qér+Q383) x (Ig1 Q1 é1+1g202 €+ I303é3)
=Ig1é+IgaMmér+Ia30és+ (Igs— Ig2) Q02 éy
+ g1~ Ig3) Q32+ (Ig2 — Ig1) Q2 é3

(12.58)

La somme des moments de forces extérieures M & se décompose dans le repere d’inertie
comine,

STME =Y ME e+ MES e+ Y ML és (12.59)

En substituant les expressions (12.58) et (12.59) dans le théoréme du moment
cinétique (12.32) et en le projetant ensuite selon les axes de coordonnées Gey, Ges et Ges,
on obtient les équations d’Euler qui déterminent le mouvement de rotation propre du
solide indéformable,

S MES = Ioa O + (o — loz) 2
S OMES =1Ica %+ (Ian — los) Qs (12.60)
S MES = Ios Q%+ (Ioz — Io1) 2

Les premiers termes des membres de droite des équations d’Euler (12.60) sont I’analogue
des termes obtenus par projection du théoreme de la quantité de mouvement (12.15) selon
les axes principaux d’inertie,

> R =MV,
Y FPt =MV, (12.61)
Y FES=MVas

La cause de 'accélération VG du centre de masse G du solide indéformable est la résultante
des forces extérieures F°** appliquées sur ce solide. De maniére analogue, la cause de
I’accélération angulaire de rotation propre Q du solide indéformable autour d'un des axes
principaux d’inertie passant par son centre de masse G est la résultante des moments de
forces extérieures M g’“ évaluée par rapport au centre de masse G. La masse M rend
compte de la résistance du centre de masse G du solide indéformable & sa mise en mouve-
ment. De maniere similaire, le moment d’inertie I ; rend compte de la résistance du solide
indéformable & sa mise en mouvement de rotation propre autour de ’axe principal d’inertie
G é;. Les deuxiémes termes des membres de droite des équations d’Euler (12.60) n’ont pas
d’analogue dans ’expression du théoreme de la quantité de mouvement. Ils décrivent le mou-
vement de précession du vecteur moment cinétique Lg autour du vecteur vitesse angulaire
Q qui peut avoir lieu parce que le moment cinétique L n’est pas colinéaire a la vitesse
angulaire de rotation propre . Or, il n’y a pas de mouvement de précession possible du


https://fr.wikipedia.org/wiki/Leonhard_Euler
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vecteur quantité de mouvement P autour du vecteur vitesse du centre de masse Vi car ces
deux vecteurs sont colinéaires.
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